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ABSTRACT 
We prove that every Banach space can be isometrically and 1-comple- 
mentably embedded into a Banach space which satisfies property/~ and has 
the same character of density. Then we show that, nevertheless, property 
/3 satisfies a hereditary property. We study strong subdifferentiability of 
norms with property /3 to characterize separable polyhedral Banach spaces 
as those admitting a strongly subdifferentiable f~ norm. In general, a 
Banach space with such a norm is polyhedral. Finally, we provide examples 
of non-reflexive spaces whose usual norm fails property /3 and yet it can 
be approximated by norms with this property, namely (LI [0, 1], I1" ]]1) and 
(C(K), I1" I]oo) where K is a separable Hausdorff compact space. 

1. I n t r o d u c t i o n  

A B a n a c h  space  X w i t h  n o r m  II'  II anti  dua l  space  X* has p r o p e r t y  $ if t he r e  

ex is t s  a s y s t e m  { x , , x T } i e t  C X x X* and  a real  n u m b e r  0 < e < 1 sa t i s fy ing  

(1) x*(xi) = 1 = IIx~ll = IIxTII, M ( x j ) l  _< ~, i r j ,  

(2) Ilxll = sup M(x)I 
i61 
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In this case, the norm I[" [I is said to have property (/3,r or simply/3 if we do 

not need to specify the parameter E. 

Property fl was introduced by J. Lindenstrauss [13] in the study of norm at- 

taining operators. He used this property as a sufficient condition for a Banach 

space X to have the so-called property B: the set of norm attaining operators 

from any Banach space into X is dense in the set of all bounded operators. The 

first result concerning renormings of Banach spaces with property/3 was proved 

by J. Partington [15] in a remarkable paper. He showed that every Banach space 

can be equivalently rcnormed to have property ft. After these pioneering works, 

many authors have turned their attention to the study of property/3. C. Finet 

and W. Schachcrmayer [4] introduced property/3 in the strong sense. On the 

other hand, M. D. Acosta, F. J. Aguirre and R. Pay~i [1] considered property 

quasi-fl, a weakness of/3 still implying B and stable under co-sums. 

Wc are concerned in this note with the geometry of spaces with property/3.  

In Section 2, we prove that every Banach space can be isometrically and 1-com- 

plementably embedded into a Banach space with property /3, and having the 

same character of density. Then we show that, nevertheless, property/3 satisfies 

a special kind of hereditary property. 

In Section 3, we deal with/3 norms which are strongly subdifferentiable (fl-SSD 

norms, for short). We first extend tile result of C. Franchetti [7] related to the 

strong subdifferentiability of the cannonical sup-norm I1" I]~ on t ~  to every norm 

/3. Using this fact we prove that a/~-SSD norm is polyhedral. Conversely, wc 

prove that every separable polyhedral space admits a ~-SSD norm, thus obtaining 

a new characterization of these spaces. We provide examples of non-separable 

polyhedral spaces admitting an equivalent ~-SSD norm. This is the case of the 

preduals of Lorentz sequence spaces d, (w, 1, F), for every infinite set F. Besides 

these results, however, thc question of whether every polyhedral Banach space 

admits a fl-SSD norm still remains open. 

The last section is devoted to approximation by fl norms. W. Schachermayer 

showed that norms with property a or/3 are dense in every superreflexive space 

[16]. He gave an example, namely gl, of a non-reflexive space whose usual norm 

does not havc property/3 and, however, can be approximated by norms with this 

property. We provide analogous examples of this situation, namely (C(K), I1" I1~) 
(where K is a separable compact Hausdorff space) and (L1 [0, 1], II �9 II1). 

2. R e n o r m i n g  re su l t s  

Throughout this paper, we consider only infinite dimensional Banach spaces over 
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the reals. Given a Banach space X,  we denote by B ( X )  the closed unit ball, 

by S ( X )  the unit sphere and by dens X its character of density. Our first result 

concerns embeddabili ty of Banach spaces into spaces with property/3.  

PROPOSITION 2.1: Every Banach space (X, [[. N) can be isometrically and 1- 

complemented embedded into a Banach space Y with property (~, 1/2) and 

dens Y = dens X. Therefore, X is isometric to a quotient of a Banach space 

with property/3. 

Proof: Let densX  = % I = [0,'y) and consider Y -- X@CO(I) equipped with the 

norm II(x,t)ll -- max{llxll, Iltll~} for x �9 X and t �9 c0(I). Note that  densX = 

densY. Take a set {x~}~<v dense in S ( X )  and corresponding {x~}~<.y C S(X*)  

so that  x*(x~) = 1. Clearly, Ilxll = sup~<~ x* (x) for every x �9 X. Let {e~}~<.~ 

be the unit vectors of the canonical basis of cO(I) and {e*}~<v the associated 

* + x ' a n d  * -- * * functionals. Set y~l = e~ + x m  Y~2 = ea - x ~ ,  Y*I = % Y~2 e~ - x ~ .  

Then Y*I(Y~I) = Y*2(Y~2) = 2, Y*i(YaJ) = 0, for i r j and lY*~i(Y~j)I - < 1, for 

a #/3 .  Then, a straight verification shows that  the equivalent norm on X defined 

by 

[(x,t)l = sup {ly*i(x,t)l} 
a<'y, i=1,2 

has property (/~, 1/2) with respect to the system {Y'i, Y,i}, a < 7, i = 1, 2 and 

the rest of the required properties. | 

One noteworthy conclusion to be drawn from Proposition 2.1 is the fact that  

property 13 does not entail any condition on the geometry of the subspaces, even 

though they were complemented. However, regarding the space Y and its sub- 

space co(I) both having property ~, one may wonder if this property is actually 

hereditary in some sense. The next result shows that  it is the case. 

PROPOSITION 2.2: Let (X, [[ �9 [[) be a Banach space satisfying property 13 with 

respect to the system {xi, X* }iEI C X x X*  and let Y C X be a (closed) subspace 

of X .  There is J C I with card J = dens Y such that, i f  we consider Z = 

span (Y  U {x j } j e j ) ,  then (Z, [[. 1[) satisfies property fi with respect to the system 
{zj ,x~}j~j  �9 z • z*.  

Proo~ Take a set {d l}ae r l  dense in S(Y )  (the unit sphere of Y with the 

restricted norm) with card P 1 ----- dens Y. For each a �9 r 1 there is a sequence 

x*l l ~  x* X* akJk=l  C { i } i e I  C such that  limk .1 1 ]xc~k(d,~)[ = 1. For each a �9 F1 and 

k �9 N, choose 1 {Xc~k} C {:t:xi}iel so that  x .1 (x 1 ~ = 1 and define ak ~, ak] 

]I2 ---- span x~k } U Y k=l  
kaErl 
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dn Assume that  Y~ has been defined. Again, if { ~ } ~ r .  is a dense subset of 
S X * n  l.oo SII.II AY,~ with cardF~ - densY,~, for each a E Fn there is a sequence t ~kJk=l C 

* s n  n {xi }ieI C X* satisfying limk Ix~k(d~)[  - -  1. For each a E Fn and k E N ,  choose 
X n { ~k} C {-t-xi}iez such that  x*~(X~k ) = 1 and define 

Yn+l = span x~k } U Yn k=l  
k a E F n  

So far we have a sequence of subspaces {Y,~}n~__l C X satisfying Yn C Yn+l and 

dens Y,~ = dens Yn+l. Set 

Z = s--p-~ . 

Clearly, Y C Z and dens Z = dens Y. In order to finish the proof we must verify 

that  

(x2k, x; lz, k e N } c Z x Z *  

satisfies property (2) since property (1) is trivially fulfilled. For this purpose, 
eo r .  1 Then, take z E Z ,  5 > 0, and y E span(Un=l n) such that  [ I z -y [ [  < ~. 

there is no E N so that y E Yno. We can find dn~ ~ E {d~~ satisfying 
no 1 ][y d~o[[ < - By definition of Ix *n~176176 ,no 

- -  n " t otokJk=l' we can pick k0 C N so that X~oko 
verifies Ix*:~o(d~,~ > 1 -  • Hence 

.no x*,~o ;d,~O~ *no _ x ( z - y ) l  > 1 3 ( l /n ) ,  Ix,:,,oko(Z)l > -I  oko(Y  oko - -  c ~ o k o  ~, C ~ o ]  - -  - -  

thus entailing that 

Ilzll = sup { Ix~(z )h  n �9 N ,a  �9 r~,  k �9 N} 

for each z �9 Z and the proof is finished. 1 

3. S t r o n g  subdi f ferent iab le  /~ norms:  a n e w  c h a r a c t e r i z a t i o n  o f  

s eparab le  p o l y h e d r a l  B a n a c h  spaces  

The norm I[" II on X is said to be strongly subdifferentiable (SSD, for short) at 

x if the one-sided limit 
lim 1 t~0+ t (Hx + th[[ - [[xH) 

exists uniformly on h E S(X) .  This non-smooth extension of Fr~chet differ- 

entiability has been encountered by many authors, frequently under different 
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definitions, and has found interesting applications (see [8] and [10] for the refer- 

ences and for recent results on this topic). It is well known [7] that  the canonical 

sup-norm [[ �9 {[oo on ~oo(F) is SSD at x = (xi) if and only if x belongs to the set 

S(F) = {x E ~oo(F): {{x{{~ > sup{{xi{: {xi[ ~ {{xl{~}. Consequently, {{. {{oo is 

SSD at each point of c0(F). We will say that a norm is/3-SSD provided it has 

property fl and it is SSD at each non-zero point of the space. 

LEMMA 3.1: The norm [{ �9 I{ on X is fl-SSD if  and onIy i f  there exists a system 

{x~,x*}ier C X x X *  and O <_ c < 1 satisfying(I) ,  (2) and T(x)  = (x; (z )  ) E S(F) 

for each x E X .  

Proof." Since T is an isometry between (X, ][ "l]) and (T (X) ,  ][ "][oo), the sufficiency 

follows from [7]. To prove the necessity, take x E S ( X )  and assume that  there 

exists a sequence {x~} C {• such that 0 < X*k(X ) < 1 and limk x~(x) = 1. 

Then, limt~0+ ~ ({Ix + txk{{ - 1) is not uniform on k. Indeed, 

{{x + txk{{ = sup {x*(x) + tx*(xk){ <_ max{1 + t~, x*k(x ) + t}, 

so for t small enough we know that [Ix + txk[] <_ 1 + tr and hence that 

lim 1 Y (ll  + tzkll - 1) < 

On the other hand, if t _> (1 - ~)- ' (1 - X*k(X)) then x*k(x ) + t > 1 + t~ and 

IIx + txkll = x*k(x) + t. Considering now t = 2(1 - ~)-1(1 - x*k(x)) we have 

IIx+txkll-1 
t 2 

although, obviously, limk(1 -- E)-I(1 -- x*k(x)) = O. | 

Recall that  a subset B C B ( X * )  is said to be a b o u n d a r y  [9, 11] if for every 

x E X there exists f E B such that  f ( x )  = [[x][. The space Z is p o l y h e d r a l  [12] 

if the unit ball of any of its finite dimensional subspaces is a polyhedron. These 

spaces have been intensively studied by V. Fonf (see [5], [6]) who, among many 

other things, proved the following relationship with boundaries: (A) if a Banach 

space has a countable boundary {f~}, then this space is polyhedral under the 

equivalent norm [[x[[ = sup{(1 + r E N } where {r is a decreasing 

sequence of positive real numbers with limn E,~ = 0; (B) conversely, given a 

polyhedral Banach space of density a, there exists a boundary B of cardinality a 

such that  for every f E B the face {x E S ( X )  : f ( x )  = 1} has non-empty interior 

in the hyperplane {x E X: f ( x )  = 1}. He also proved that  each polyhedral space 
contains a copy of Co [5]. 
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PROPOSITION 3.2: Every ~-SSD norm is polyhedral. 

Proof'. Let us consider a fi-SSD norm I1" [[ on a Banach space X with associated 

system {xi,x*}iei. Notice that from Lemma 3.1, the set B = {+x*}iei is a 

boundary and also 

~x = 1 - s u p  {[x*(x)l: [x*(x)l # 1} :> 0 

for every x C S (X) .  Consider now y C S ( X )  with ]]x-yl] < (~, and x* E B with 

x* (y) = 1. Clearly x*(x) = 1, thus implying that the segment [x, y] is included 

in S ( X ) .  This yields in particular that the set of extreme points of the unit 

sphere of any (closed) subspace of X has no accumulation points. Therefore, the 

restricted norm on a finite dimensional subspace has a finite number of extreme 

points in its unit sphere. I 

A particular case of the above Proposition was proved in [3]. We come now to 

the main result of this section which, for separable spaces and up to an equivalent 

renorming, is the converse of Proposition 3.2. It yields a new and surprising 

characterization of separable polyhedral Banach spaces. 

We say that  a norm []. I[ with a boundary {f~} satisfies (,) whenever for each 

x E X \{0}  there is no(x) C N and a(x) > 0 such that if n >_ no(x), then 

Ifn(x)I < IIxl] - a(x). Therefore, this norm is SSD. Moreover, it can be proved, 

by an easy compacity argument, that for every finite dimensional subspace F, 

there is Y e N so that Iizl[ = sup{fj(x): j < N}, i fx  e F. Thus, the norm II" II 

is also polyhedral. Observe, for instance, that the norm ]1' II exhibited in (A) 

satisfies (*). Recall that a norm I I is K-equivalent to II" ]I if Iixl] _~ Ix I < gilxl] , 
for every element x in the space. 

PROPOSITION 3.3: Let X be a separable polyhedral Banach space. Then, for 

any equivalent norm I[" [[ and K > 3 there is a K-equivalent and (j~, 6)-SSD norm 

[. [ (even with property ( .)  and e depending only on K) .  

Proof: It is proved in [2] that every equivalent norm in a separable polyhedral 

Banach space can he uniformly approximated on bounded sets by norms N(.) 

satisfying (*), so we can assume that [[. [[ also satisfies (,). 

Fhrthermore, by [5] and [14, p. 97], we obtain that for every e > 0 the space 

(X, ][. I[) contains a subspace e-isometric to Co with its usual norm I1" ][o~ and then, 

using [14, p. 106] for every e > 0, there is a projection p :  (X, I[' [[) ---+ (Co, [[" [[o~) 
of norm less than or equal to 2 + e. For these reasons, we may assume that: 

1. if we denote by (en) the canonical basis of Co and consider them as elements 

of X, the norm t[e,~l[ < 1 + ~; 
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2. if we denote by (e~) the canonical basis of 61, the elements of X* defined 

by z n = e n o p  have norm IIz~ll* _< 2 +~.  

We shall prove that for r > 0 small enough and M = 1 + 4v~ , the new equivalent 

norm l" l, defined as 

I 1= sup Ig ,0(x)l 
s E N ,  0 = ~ 1  

where gn,o = f~ + OMz*, is/3-SSD. Clearly Ilxll <_ Ixl < (1 + 2M + eM)llxll. 

The fact that  lim~ z~ = 0 in the weak* topology and property (*) implies that  

for every 0 = +1 and x E X \{0}, 

limsup Ig~,o(x)l <_ limsup I fn(x)l ~ [Ixll-  a(x)<_ I x l -  a(x). 
n n 

Therefore, (g~,0) is a countable boundary satisfying also (*) and thus [. I is 

polyhedral and SSD. In order to prove that ]. [ is/3, take (x,~) c S]I.H, the unit 

sphere of II " II, so that  fn(xn) = 1 (if for some k such a point does not exist we 

can remove fk as an element of the boundary {fn}). Passing to subsequences of 

(e~) and (z~) if necessary, we may assume that If~(en)t <_ e and lz~(z~)l <_ e. If 

we associate to each 9~,o the element y,~,o = Y,~ + OM'e, C X with M'  = @~ we 
obtain 

1 
9n,o(Yn,o) >- 5 + x/~ v~(1 + v~ + 4r 

1 
]g,,o(y,,-o)l <- 3 + ~ + v~(1 + x /e+  4e), 

1 
Ig ,~ ,e(y .~ ,o , ) l<_a+--~+v~(9+v~+4E),  i f nT~m,  

and thus for c > 0 small enough we deduce that I" I is/3. | 

Notice that  the constant K > 3 is the best known to approximate an arbitrary 

norm by/3 norms in non-superreflexive Banach spaces [15]. 

COROLLARY a.4: A separable Banach space is polyhedral if and only if it can 

be (equivalently) renormed with a f l -SSD norm. 

The situation in non-separable Banach spaces seems to be not so clear. A 

"non-separable" version of the proof of Proposition 3.3 applies to find j3-SSD 

norms in some non-separable polyhedral Banaeh spaces. We will finish this sec- 

tion by exhibiting examples of classical non-separable polyhedral Banach spaces 

admitting equivalent/3-SSD norms. 
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PROPOSITION 3.5: Let X = ( ~ i e r  Xi)c o, where F is an infinity cardinal and 
X~ are separable polyhedral Banach spaces. Then X has a t3-SSD norm. 

Proo~ Take K > 3 and let, for each i C F, {xn~, fn~}n~--_l be a system (which 

has come from Proposition 3.3) such that the norm on Xi, 

[u [=sup{Ix*i (u) ] :  l < n < o c } ,  u e X i ,  

is K-equivalent to the original one and /3-SSD. It is clear that the equivalent 

norm on X, 

[x I - - sup{ lx* i (x ) t :  l < n < c c ,  i � 9  

is K-equivalent and ~3-SSD too. | 

Let us consider now the infinite predual Lorentz sequence spaces d.(w, 1, F), 

for any infinite set F. Recall that (wn) is a non-increasing sequence of positive 

numbers such that  wl = 1, limn-~r162 wn = 0 and ~ wn = co. The Banach space 

d . ( w , l , r )  consists of all points x = (xi)ier �9 c0(F) so that  if [xill _> ]xi~t _> 

]xi3[ _> . .-  is the non-increasing rearrangement of the non-zero coefficients of 

(Ixil), then 

lim ~-:~ [xi~ [ _ 0. 
n 

n E 1  Wk 

The norm of a point x �9 d.(w, 1, F) is 
n 

IIxll = sup El lX  l 
n E 1  Wk 

PROPOSITION 3.6: For any F, the Banach space d . ( w , l , F )  admits a ~-SSD 

norm. 

Proof: Let us denote by (ei) and (e*) the canonical bases of d,(w, 1, F) and its 

dual d(w, 1, F), respectively. Recall that the family 

y = 
n ~-]~1 wk : n �9 N, ik �9 F, ik ~ im if k ~ m and ~k = +1 

is a boundary of d . ( w , l , F )  of cardinality equal to the density of the space. 
i We relabel the family ~" as (f~)~er, ~eN. Note that,  in fact, (f~) satisfies: for 

each x �9 d.(w,  1) \ {0}  there is a finite set F(x)  C F x N and a(z )  > 0 such 

that  if (i ,n) r F(z ) ,  then ]f~(x)l <_ [ Ix[[-  a(x).  So the usual norm I[" [I of 

i in the unit sphere SH.]I so that  d.(w,  1,F) is polyhedral and SSD. Choose x~ 
i i * i  i f~(x~) = 1, and relabel the biorthogonal system {e~, ei} as {e~, e,~}. Since the 

weak*-limpF(r ) e* = 0 and weak-limpF(r ) ei = 0, we may assume, as in the proof 

of Proposition 3.3, that ~ i .i i [f~(e~)[ < e and [en (x~)[ < e. Proceeding in the same 

way we obtain a/3-SSD norm. | 
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4. A p p r o x i m a t i o n  b y / 3  n o r m s  

This section is devoted to examples of some non-reflexive classical Banach spaces 

whose usual norm can be approximated by norms with property/3. It is notewor- 

thy here that  Partington's renorming result insures the existence of K-equivalent 

norms with the mentioned property for every K > 3, thus it cannot be used for 

this purpose. On the other hand, recall that  W. Schachermayer [16] proved this 

approximation to be true for the usual norm on ~1 and for every (equivalent) 

norm in superrefiexive spaces. Denote by 5, the evaluation map at x. 

PROPOSITION 4.1: Let  C(K) be the space of continuous functions on a sep- 

arable compact Hausdorff space K. The usual norm It" Iloo can be uniformly 

approximated by norms satisfying property/3. 

Proof: If the compact K is scattered, then we are done since I1" Itoo has property 

(/3, 0). Otherwise, we may choose a positive and atomless regular Borel measure 

# E C(K)* so that  # (K)  = 1. Take a dense sequence {X~}n C K. Since #(x,~) -- 

0, there exists an open subset U~ C K so that xn E Un and #(Un) <_ e/2 n+l. 
1 1 In particular, # (K  \ U) > ~ so we may Then {Xn}n C U,~U~ = U and #(U) <__ 7' 

choose Yl E K \ U and an open subset V1 C K so that Yl E V1 and #(V1) _< �88 

We proceed by induction and obtain a sequence {y~}~ and open subsets {V~}n 

in K so that  yn E K \ ( U  U V1 U . . .  V,~-I), y,~ E V~ and p(V,~) _< 1/2 n+l. Note 

that {xn}n C U and {yn}~ C K \ U and thus every xn g {Yn: n E N}. Also, 

y,~ ~ Ym for n # m, y~ E V,~ and, for m > n, y,~ E K \ V,~. The last implies that  

y,~ r {y,~ : m > n} and thus y,~ • {y,~ : m # n}. We now proceed to construct 

the approximating norms. Given c > 0, the family {hx~ +r C C(K)* will be 

the "dual part" of the system needed for property/3. For each n E N, we consider 

the two compacts K~ = {x~, y,~} and K~ --- {ym: m # n}. By Urysohn's lemma, 

there is f~(x) E S(C(K))  so that  f~(x,~) = f~(y~) = 1 and f~]{v,~: m#,~) -- 0. 

Clearly, (Sz~ + r = 1 + r while [(5~ + r = [fm(Xn)] _< 1 for 

n ~ m. Finally, if we define 

Ifl = sup 1(Sx~ + cSu~)(f)l 
n 

then I" I is an equivalent norm enjoying property (fl, 1--~) with respect to the 

system {5~ + ESy., _L_~} Moreover, (1 - E)IIflI~ < l f l  < (1 + ~)llfll~. m l + e  " - -  - -  

PROPOSITION 4.2: The usual norm ]]. ]]1 o f  L 1 1 0 ,  1] can be uniformly approxi- 

mated on bounded sets by/3 norms. 

Proof: Let e E (0, 1) be given. Consider in [0, 1] two sequences {xn}, {s,~} $ 0, 

two families of intervals In = [Xn - 2en, xn + 2e~], Jn = [xn - en, x,~ + ~,~] such 
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that In c [0, 1], n �9 N and I .  NIm = O, for n r m, and a dense sequence {fn} C 

S(C[0, 1]). Select {gn} C C[0, 1] satisfying that supp9,~ C In, (fn+gn)lJ,, =- 1+~" 

and II.t'~ + g n l l ~  = 1 +c .  Set hn = f,, + 9 .  �9 C[0, 1] and define in L110, 1] (which 

embeds isometrically in C* [0, 1]) the equivalent norm 

I r 
sup, < hn, > ,  = sup) ! hnr �9 L,[0, lJ 

n n [ J [ o , 1 }  I 

Clearly, [~b[ <_ (1 + e)l[~b[[. On the other hand, limn f[0,al 9n~b = 0 for every ~b. 

Thus, I[r -< [r <-- (1 +e)[]r Finally, note that if 

1 
Cn --- 2 - ~ x J .  

we have 
f 

"~ hn' ~2n ~'= I_ hn = 1 + c, 
d j  

n 

[ < h , ~ , r  / i  fn _<1, f o r n C m  
d,/ 

m 

and then [. [ has property (fl, 1 1--77) with respect to the system {h,,, 12~}. II 

Proposition 4.2 can be generalized to every LI (K ,# ) ,  where K is a separa- 

ble Hausdorff compact space and # is a positive regular Borel and probabilistic 

measure. 

As we have already mentioned, apart from these examples and the cases con- 

sidered by Schachermayer, there are no results on approximation with norms 

satisfying property/3. If we fix e > 0, then it is not difficult to find norms that 

cannot be approximated by other norms satisfying property (fl, e). For instance, 

it is the case for every locally uniformly rotund norm (one can be convinced by a 

simple drawing in the plane, playing with a circle and a polygon). Thus we can 

finish this note with a question that now arises in a natural way: does there exist 

a Banach space with a norm that cannot be arbitrarily approximated by norms 

with property/3? 
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