ISRAEL JOURNAL OF MATHEMATICS 111 (1999), 263-273

GEOMETRY OF BANACH SPACES WITH PROPERTY B

BY

A. S. GRANERO AND M. JIMENEZ SEVILLA

Departamento de Andlisis, Matemdtico, Facultad de Ciencias Matemdticas
Universidad Complutense de Madrid, Madrid, 28040, Spain
e-mail: granero@eucmac.sim.ucm.es, marjim@sunaml.mat.ucm.es

AND

J. P. MORENO*

Departamento de Matemdticas, Facultad de Ciencias
Universidad Auténoma, Madrid, 28049, Spain
e-tnail: josepedro.moreno@uam.es

To the memory of A. Plans

ABSTRACT

We prove that every Banach space can be isometrically and 1-comple-
mentably embedded into a Banach space which satisfies property 8 and has
the same character of density. Then we show that, nevertheless, property
3 satisfies a hereditary property. We study strong subdifferentiability of
norms with property 3 to characterize separable polyhedral Banach spaces
as those admitting a strongly subdifferentiable 3 norm. In general, a
Banach space with such a norm is polyhedral. Finally, we provide examples
of non-reflexive spaces whose usual norm fails property S and yet it can
be approximated by norms with this property, namely (L1[0, 1}, ]| - [[1) and
(C(K), i - loo) where K is a separable Hausdorff compact space.

1. Introduction
A Banach space X with norm || - || and dual space X* has property § if there
exists a system {z;,z} }ic; C X x X* and a real number 0 < ¢ < 1 satisfying
(1) gi(z;) = 1= |lzll = lizill, lzi(e;)l<e, 1#7,
(2) llzll = sup |} (z)].
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In this case, the norm || - || is said to have property (3,¢) or simply 3 if we do
not need to specify the parameter €.

Property 3 was introduced by J. Lindenstrauss [13] in the study of norm at-
taining operators. He used this property as a sufficient condition for a Banach
space X to have the so-called property B: the set of norm attaining operators
from any Banach space into X is dense in the set of all bounded operators. The
first result concerning renormings of Banach spaces with property 3 was proved
by J. Partington [15] in a remarkable paper. He showed that every Banach space
can be equivalently renormed to have property 3. After these pioneering works,
many authors have turned their attention to the study of property . C. Finet
and W. Schachermayer [4] introduced property f§ in the strong sense. On the
other hand, M. D. Acosta, F. J. Aguirre and R. Payé [1] considered property
quasi-3, a weakness of 3 still implying B and stable under cg-sums.

We are concerned in this note with the geometry of spaces with property S.
In Section 2, we prove that every Banach space can be isometrically and 1-com-
plementably embedded into a Banach space with property £, and having the
same character of density. Then we show that, nevertheless, property 3 satisfies
a special kind of hereditary property.

In Section 3, we deal with § norms which are strongly subdifferentiable (3-SSD
norms, for short). We first extend the result of C. Franchetti [7] related to the
strong subdifferentiability of the cannonical sup-norm || - || on £ to every norm
B. Using this fact we prove that a $-SSD norm is polyhedral. Conversely, we
prove that every separable polyhedral space admits a 3-SSD norm, thus obtaining
a new characterization of these spaces. We provide examples of non-separable
polyhedral spaces admitting an equivalent $-SSD norm. This is the case of the
preduals of Lorentz sequence spaces d.(w, 1,T"), for every infinite set I'. Besides
these results, however, the question of whether every polyhedral Banach space
admits a §-SSD norm still remains open.

The last section is devoted to approximation by 3 norms. W. Schachermayer
showed that norms with property a or 3 are dense in every superreflexive space
[16]. He gave an example, namely ¢;, of a non-reflexive space whose usual norm
does not have property 3 and, however, can be approximated by norms with this
property. We provide analogous examples of this situation, namely (C(K), || ||oo)
(where K is a separable compact Hausdorff space) and (L, [0, 1], || - [|1)-

2. Renorming results

Throughout this paper, we consider only infinite dimensional Banach spaces over
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the reals. Given a Banach space X, we denote by B(X) the closed unit ball,
by S(X) the unit sphere and by dens X its character of density. Our first result
concerns embeddability of Banach spaces into spaces with property (.

PROPOSITION 2.1: Every Banach space (X,] - ||) can be isometrically and 1-
complemented embedded into a Banach space Y with property (8,1/2) and
densY = dens X. Therefore, X is isometric to a quotient of a Banach space
with property (3.

Proof: Letdens X = ~, I =[0,7) and consider Y = X @¢y(I) equipped with the
norm ||(z,t)|| = max{||z|, |||} for z € X and t € co(I). Note that dens X =
densY. Take a set {Z4}a<~ dense in S(X) and corresponding {z};}o<y C S(X*)
so that z,(z,) = 1. Clearly, ||z|| = sup,, z4(z) for every z € X. Let {eq}acy
be the unit vectors of the canonical basis of cy(I) and {e}}o< the associated
functionals. Set yo1 = €a + Ta, Ya2 = €0 — Loy Yoy = € + 5, and yly =€ — .
Then 31 (¥a1) = Yaz(a2) = 2, ¥2:(¥a;) = 0, for i # j and |y3;(ys;)| < 1, for
o # . Then, a straight verification shows that the equivalent norm on X defined
by

I(z,1)| = LS 2{|y2i(iv, )}

has property (8,1/2) with respect to the system {y%;, o}, @ <7, 7 = 1,2 and
the rest of the required properties. 1

One noteworthy conclusion to be drawn from Proposition 2.1 is the fact that
property 3 does not entail any condition on the geometry of the subspaces, even
though they were complemented. However, regarding the space Y and its sub-
space ¢p(I) both having property 3, one may wonder if this property is actually
hereditary in some sense. The next result shows that it is the case.

ProPOSITION 2.2: Let (X, || - ||) be a Banach space satisfying property 3 with
respect to the system {z;,z} };cr C X X X* and let Y C X be a (closed) subspace
of X. There is J C I with cardJ = densY such that, if we consider Z =
span (Y U{z,};cs), then (Z,|| -||) satisfies property 3 with respect to the system
{zj,25}jes € Z x Z*.

Proof: Take a set {dl}qcr, dense in S(Y) (the unit sphere of Y with the
restricted norm) with cardI'; = densY. For each a € T'; there is a sequence
{zxd}2, € {2}}ier C X* such that limy|z%}(dL)| = 1. For each @ € T'; and
k €N, choose {z};} C {£zi}ics so that z*l(zl,) =1 and define

Y, =5pan { U {zl 12U Y} .

a€l;
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Assume that Y, has been defined. Again, if {d?}ser, is a dense subset of
S).yNYy, with card ', = dens Yy, for each a € T',, there is a sequence {z37}}72, C
{z}}ier C X* satisfying limy |22} (d7%)| = 1. Foreach a € I', and k € N, choose
{a?.} C {£z}ics such that 237} (z2,) =1 and define

Yn41 = Span { U v Yn}~

aely,

So far we have a sequence of subspaces {Y,}32, C X satisfying Y,, C Y4, and
densY, = densY, ;. Set

oo (%)
n=1

Clearly, Y C Z and dens Z = densY. In order to finish the proof we must verify
that
{z, 2%|,, a €Ty, keN}C Zx 2*

satisfies property (2) since property (1) is trivially fulfilled. For this purpose,
take z € Z , 6 > 0, and y € span({J,_, ¥») such that ||z — y|| < L. Then,
there is ng € N so that y € Yn,. We can find d3 € {d3°}acer,, satisfying
ly — dpoll < %. By definition of {}"%}72,, we can pick ko € N so that z™¢

aoko
verifies |20 (dno)| > 1— 1. Hence

2279, (2)] 2 Jang, (dr0)] — 22, (v — d29)] — [, (= — )| = 1 = 3(1/m),
thus entailing that

liz|l = sup {|z}%(2)|, n € N,a € Ty, k € N}
for each 2 € Z and the proof is finished. |

3. Strong subdifferentiable 5 norms: a new characterization of
separable polyhedral Banach spaces

The norm || - || on X is said to be strongly subdifferentiable (SSD, for short) at
z if the one-sided limit

1
im — th| -
Jim = (ll2 + ¢kl - ol

exists uniformly on h € S(X). This non-smooth extension of Fréchet differ-
entiability has been encountered by many authors, frequently under different
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definitions, and has found interesting applications (see [8] and [10] for the refer-
ences and for recent results on this topic). It is well known [7] that the canonical
sup-norm || - |leo 0n €oo(I") is SSD at = = (z;) if and only if = belongs to the set
S(I) = {z € £o(T): lIzlloo > sup{jz:|: |zi| # |lzllec}. Consequently, | - ||l is
SSD at each point of ¢o(I'). We will say that a norm is 3-SSD provided it has
property ( and it is SSD at each non-zero point of the space.

LEMMA 3.1: The norm || - || on X is $-SSD if and only if there exists a system
{zi, 2} tier C XxX* and 0 < e < 1 satisfying (1), (2) and T(z) = (z}(z)) € S(T")
foreachz € X.

Proof: Since T is an isometry between (X, ||-||) and (T(X), |||l ), the sufficiency
follows from [7]. To prove the necessity, take z € S(X) and assume that there
exists a sequence {z;} C {%z]}icr such that 0 < z}(z) < 1 and limy z}(z) = 1.
Then, lim;_¢+ 1 (|| + tz|| — 1) is not uniform on k. Indeed,

llz + tzkll = sup |e; () + 2} (zk)] < max{1 + te, 3 (2) + t},
so for t small enough we know that ||z + tzx]] < 1+ te and hence that
1
im — t —1)<e.
Jim & (o +tzl - 1) < e

On the other hand, if t > (1 —&)~!(1 — z}(z)) then z}(z) +t > 1+ te and
lz + tzx|| = 2} (x) +t. Considering now ¢ = 2(1 — €)~1(1 — z}(z)) we have
lz +tzel| =1 e+1
t 2
although, obviously, limg(1 — &)~1(1 — z}(z)) = 0. "

Recall that a subset B C B(X*) is said to be a boundary [9, 11] if for every
= € X there exists f € B such that f(z) = ||z||. The space X is polyhedral [12]
if the unit ball of any of its finite dimensional subspaces is a polyhedron. These
spaces have been intensively studied by V. Fonf (see [5], [6]) who, among many
other things, proved the following relationship with boundaries: (A) if a Banach
space has a countable boundary {f,}, then this space is polyhedral under the
equivalent norm ||z|| = sup{(1 + €n)fn(z),n € N } where {&,} is a decreasing
sequence of positive real numbers with lim,e, = 0; (B) conversely, given a
polyhedral Banach space of density «, there exists a boundary B of cardinality o
such that for every f € B the face {z € S(X) : f(z) = 1} has non-empty interior

in the hyperplane {z € X: f(x) = 1}. He also proved that each polyhedral space
contains a copy of ¢g [5].
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ProrosiTiON 3.2: Every 3-SSD norm is polyhedral.

Proof: Let us consider a §-SSD norm || - || on a Banach space X with associated
system {z;,z}}ier. Notice that from Lemma 3.1, the set B = {£z}}icr is a
boundary and also

0 = 1 —sup {|z7 (2)]: [z} ()| # 1} > 0

for every z € S(X). Consider now y € S(X) with ||z — y|| < 65, and z* € B with
z*(y) = 1. Clearly z*(z) = 1, thus implying that the segment [z,y] is included
in S(X). This yields in particular that the set of extreme points of the unit
sphere of any (closed) subspace of X has no accumulation points. Therefore, the
restricted norm on a finite dimensional subspace has a finite number of extreme
points in its unit sphere. |

A particular case of the above Proposition was proved in [3]. We come now to
the main result of this section which, for separable spaces and up to an equivalent
renorming, is the converse of Proposition 3.2. It yields a new and surprising
characterization of separable polyhedral Banach spaces.

We say that a norm || - || with a boundary {f,} satisfies (x) whenever for each
z € X {0} there is ng(z) € N and a(z) > 0 such that if n > ng(z), then
|fa(z)| < |jz|| — a(z). Therefore, this norm is SSD. Moreover, it can be proved,
by an easy compacity argument, that for every finite dimensional subspace F,
there is N € N so that |[z|| = sup{f;(z): § < N}, if z € F. Thus, the norm || - ||
is also polyhedral. Observe, for instance, that the norm || - || exhibited in (A)
satisfies (*). Recall that a norm |-| is K-equivalent to || - || if ||z]| < |z| < K]|z]|,
for every element z in the space.

PROPOSITION 3.3: Let X be a separable polyhedral Banach space. Then, for
any equivalent norm ||- || and K > 3 there is a K-equivalent and (8, ¢)-SSD norm
| - | (even with property (x) and e depending only on K ).

Proof: 1t is proved in [2] that every equivalent norm in a separable polyhedral
Banach space can be uniformly approximated on bounded sets by norms N(-)
satisfying (*), so we can assume that || - || also satisfies (*).

Furthermore, by [5] and [14, p. 97], we obtain that for every € > 0 the space
(X, 1|-]I) contains a subspace e-isometric to ¢y with its usual norm ||+ ||, and then,
using {14, p. 106] for every € > 0, there is a projection p : (X, {i-]I) — (co, || [loo)
of norm less than or equal to 2 + . For these reasons, we may assume that:

1. if we denote by (e,) the canonical basis of ¢y and consider them as elements

of X, the norm lle,|| £ 1+¢;
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2. if we denote by (e}) the canonical basis of £;, the elements of X* defined
by 2z} = e’ op have norm ||2}||* <2 +e.
We shall prove that for € > 0 small enough and M = 1+ 4./, the new equivalent

norm | - |, defined as

lz] = sup |gne(z)|
nEN, §=31

where gn 9 = fn, + 0Mz}, is B-SSD. Clearly ||z|| < |z| < (1 +2M + eM)||z||.

The fact that lim, 2;; = 0 in the weak* topology and property (x) implies that

for every § = 1 and z € X {0},

lim supga,o(z)| < limsup|fu()] < llal| - a(z) < |2l - a(a).
n k13

Therefore, (g, ) is a countable boundary satisfying also (x) and thus |- | is
polyhedral and SSD. In order to prove that | - | is B, take (z,) C Sy, the unit
sphere of || - ||, so that f,(z,) =1 (if for some k such a point does not exist we
can remove fi as an element of the boundary {f,}). Passing to subsequences of
{en) and (z;,) if necessary, we may assume that |fn(en)| <€ and |2} {(z,)| <e. I
we associate to each g, ¢ the element y, ¢ =y, + 0M’e, € X with M’ = % we
obtain

1
gn,G(yn,G) >54 —=— \/g(l + \/g +46),

Nz

[9n,6(Yn,~6)] < 3+ % + Ve(l + Ve + 4e),
19r.0(ym o)l <3+ —\% +VE(9+ Ve +4e), ifn#m,

and thus for £ > 0 small enough we deduce that | - | is 3. ]

Notice that the constant K > 3 is the best known to approximate an arbitrary
norm by 3 norms in non-superreflexive Banach spaces [15].

COROLLARY 3.4: A separable Banach space is polyhedral if and only if it can
be (equivalently) renormed with a 3-SSD norm.

The situation in non-separable Banach spaces seems to be not so clear. A
“non-separable” version of the proof of Proposition 3.3 applies to find 8-SSD
norms in some non-separable polyhedral Banach spaces. We will finish this sec-
tion by exhibiting examples of classical non-separable polyhedral Banach spaces
admitting equivalent 4-SSD norms.



270 A. S. GRANERO, M. JIMENEZ SEVILLA AND J. P. MORENO Isr. J. Math.

ProPOSITION 3.5: Let X = (@ier Xi)c(,’ where T is an infinity cardinal and
X, are separable polyhedral Banach spaces. Then X has a ($-SSD norm.

Proof: Take K > 3 and let, for each i € T, {Zns, fni}3%; be a system (which
has come from Proposition 3.3) such that the norm on X;,

|ul =sup {|zn;(v)]: 1<n< o0}, uelX;,
is K-equivalent to the original one and $-SSD. It is clear that the equivalent
norm on X,
|z] =sup{jz;.(z)]: 1<n<o0,i€T},
is K-equivalent and $-SSD too. 1

Let us consider now the infinite predual Lorentz sequence spaces d,(w,1,T),
for any infinite set I". Recall that (w,) is a non-increasing sequence of positive
numbers such that wy = 1, limp o wr, = 0 and Y wy, = 0o. The Banach space
d(w,1,T) consists of all points z = (z;)icr € ¢o(T") so that if |z;,| > |z;,] >
|ziy| > --- is the non-increasing rearrangement of the non-zero coefficients of
(lzi‘)a then

tim 22 %5l _ g
no Y Wk
The norm of a point z € du(w,1,T) is
— ZZL |mik|
llzl| = SI:IP m
PROPOSITION 3.6: For any I', the Banach space d.(w,1,T") admits a §-SSD
norm.

Proof: Let us denote by (e;) and (e}) the canonical bases of d,(w,1,T") and its
dual d(w,1,T), respectively. Recall that the family
fz{z—lfﬁ: neEN, i€l & #iy, if k#m and skzil}
El W

is a boundary of d,{w,1,T") of cardinality equal to the density of the space.
We relabel the family F as (f%)icr nen. Note that, in fact, (f2) satisfies: for
each z € d,(w,1) \{0} there is a finite set F(z) C ' x N and a(z) > 0 such
that if (i,n) € F(z), then |fi(z)| < ||z|| — a(z). So the usual norm || - || of
d.(w,1,T) is polyhedral and SSD. Choose z, in the unit sphere S, so that
fi(z) = 1, and relabel the biorthogonal system {e},e;} as {€}%, e} }. Since the
weak*-limp,.r) €] = 0 and weak-limp, ) e; = 0, we may assume, as in the proof
of Proposition 3.3, that |fi(e})| < € and |ei(z%)| < &. Proceeding in the same
way we obtain a 3-SSD norm. 1
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4. Approximation by 5 norms

This section is devoted to examples of some non-reflexive classical Banach spaces
whose usual norm can be approximated by norms with property 3. It is notewor-
thy here that Partington’s renorming result insures the existence of K-equivalent
norms with the mentioned property for every K > 3, thus it cannot be used for
this purpose. On the other hand, recall that W. Schachermayer [16] proved this
approximation to be true for the usual norm on ¢; and for every (equivalent)
norm in superreflexive spaces. Denote by §, the evaluation map at z.

ProprosITION 4.1: Let C(K) be the space of continuous functions on a sep-
arable compact Hausdorff space K. The usual norm || - || can be uniformly
approximated by norms satisfying property (3.

Proof: If the compact K is scattered, then we are done since || |lo has property
{8, 0). Otherwise, we may choose a positive and atomless regular Borel measure
p € C(K)* so that u(K) = 1. Take a dense sequence {z,}, C K. Since u(z,) =
0, there exists an open subset U, C K so that x, € U, and u(U,) < /2"t
Then {2}, C UnU, = U and p(U) < 3. In particular, u(K ~U) > 1 so we may
choose 1 € K ~ U and an open subset V; C K so that y; € V; and u(V7) < %.
We proceed by induction and obtain a sequence {y,}, and open subsets {V; }»
in K so that y, € KNUUVL U V,_1), yn € Vi and p(V,) < 1/27F1. Note
that {z,}, C U and {yn}, C KU and thus every z,, € {yn: n € N}. Also,
Un # ym for n # m, y, € V,, and, for m > n, y € K\ V,,. The last implies that
Yn & {ym : m > n} and thus y, &€ {ym : m # n}. We now proceed to construct
the approximating norms. Given € > 0, the family {4, +€d,, }» C C(K)* will be
the “dual part” of the system needed for property 8. For each n € N, we consider
the two compacts K, = {z,, yn} and K = m By Urysohn’s lemma,
there is fn(z) € S(C(K)) so that fu(zsn) = fa(yn) = 1 and fal{y,: mpn) = 0.
Clearly, (05, + €dy,)(fn) = 1+ & while |(8,, + €0y, )(fm) = |fm(zs)] < 1 for
n # m. Finally, if we define

|fI = sup |(8z, + €6y, )(f)]
then | -| is an equivalent norm enjoying property (8, 737) with respect to the
system {J, + €6y, , i":’_‘—e} Moreover, (1 —€)||flloo < [f] £ (1 +&)]|flloo- |

PROPOSITION 4.2: The usual norm | - |1 of L1[0,1] can be uniformly approxi-
mated on bounded sets by § norms.

Proof: Let € € (0,1) be given. Consider in [0,1] two sequences {z,},{e.} | 0,
two families of intervals I, = [z, — 2en, Zn + 26,], Jn = [Tn — €n, Tn + €] such
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that I, C [0,1},n € N and I,NI,, =0, for n # m, and a dense sequence {f,} C
S(C[0,1]). Select {gn} C C[0, 1] satisfying that supp gn C In, (fa+gn)ls, = 1+¢
and ||fn + gnlleo = 1+¢. Set by, = fr +gn € C[0, 1] and define in Ly[0, 1] (which
embeds isometrically in C*[0, 1]) the equivalent norm

hatp|, € L1[0,1].

|| =sup | < hny, ¥ > | =sup
n n

Clearly, |¢| < (1 4+ ¢)|j¢||. On the other hand, lim, f[O,l] gn% = 0 for every 1.
Thus, ||¢]] < 19| € (1 +¢)||9|]. Finally, note that if

1

Yo = %, o XJa

we have

< hpytn >:/ h,=1+¢,

|<hm¢‘m>|=

fn

<1, forn#m

and then | - | has property (8 with respect to the system {h,, 1+E} |

1)

Proposition 4.2 can be generalized to every L(K,u), where K is a separa-
ble Hausdorff compact space and p is a positive regular Borel and probabilistic
measure.

As we have already mentioned, apart from these examples and the cases con-
sidered by Schachermayer, there are no results on approximation with norms
satisfying property 8. If we fix € > 0, then it is not difficult to find norms that
cannot be approximated by other norms satisfying property (/3,¢). For instance,
it is the case for every locally uniformly rotund norm (one can be convinced by a
simple drawing in the plane, playing with a circle and a polygon). Thus we can
finish this note with a question that now arises in a natural way: does there exist
a Banach space with a norm that cannot be arbitrarily approximated by norms
with property 8?7
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